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ABSTRACT

One of the major purposes of optimization in cetilgineering is to perform a suitable design for strecture.
This goal has to fulfill technical criteria and ¢aim the minimum economical costs. Building frana@e of the most
customary civil engineering structur&enetic Algorithm which is one of the optimizatiorethods inspired by nature, has
overcome this problem. In order to solve such pols, genetic algorithm needs a multiple analysestmictures.
Therefore, in this study attempts were made tamchice and embed new formulae into a newly develggwedram to
handle new techniques for selection and mutatiogestic operations. This optimization technique eell substitute
that of the deterministic one where a consideréddtor of safety and therefore, a heavy structsralaays is a must. For
this purpose, one may take into account the beh&eidoad, yield stress, young modulus, etc, ugagameters such as
standard deviation and variance, through whichtgafemarks can be embedded into the design proeebyrsome

mathematical relations, resulting to optimizatientnique.
KEYWORDS: Genetic Algorithm, Reproduction, Crossover, Mutat®bjective Function Constraints Optimum Weight

INTRODUCTION
1.1 General

“The science of selecting best design from the ptat#e ones with the aim of achieving better econa@md

functional performance is known as Optimization”.

Optimization is the act of obtaining optimum resufider given circumstances. In the design, constru@and
maintenance of any engineering system, enginears ttatake many technological and managerial detssat several
stages. The ultimate goal of all such decision® isither maximize the desired benefit or minimiae effort required.
Since the effort required or the benefit desiredriy practical situation can be expressed as aifumof certain design
variables, optimization can be defined as the @ oé finding the conditions that give the maximoamminimum value of
a function. Function which is expressed in termdexdign variables is called objective function. fehis no single method
available for solving all optimization problemsieféntly. Hence a number of optimization methodsehbeen developed

for solving different types of optimization problem

The optimum seeking methods are also known as mmatheal programming techniques and are generally
studied as a part of operations research. Opesat&search is a branch of mathematics concernédthétapplication of

scientific methods and techniques to decision ngagimblems and with establishing the best or ofdtsnhutions.

Genetic Algorithms are the form of random searchhods based on the mechanics of natural genethosy T
combine the concept of DARWIN'S theory of ‘SURVIVAQF THE FITTEST’ with genetic operators to formabust
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search procedure. Its simplicity of approach amdatiness in discrete variable combinations makeoite attractive than

mathematically complex methods.
1.2 Problem Statement

The processes of obtaining the optimum design rofcgires are very complex to solve by hand, dutarge
number of design variables, objectives. Typicathg design is limited by constraints such as theicehof material,
feasible strength, displacement deflect on, sizesiraints, load cases, support conditions, and ligkevior of beam to
column connection. Hence, one must decide whichmaters can be modified during the optimizatiorcpss. Usually,
structural optimization problems involve searchiiog the minimum of the structural weight in ste@usture. This
minimum weight design is subjected to various a@ists with respect to performance measures, sacétrasses and
displacements, and restricted by practical minimenoss-sectional areas or dimensions of the stralctmembers or

components.

1.3 Structural Optimization

1.3.1 Main Advantages of Steel Structures

Steel is a universally used material. It is usedegiseparately or combined with another mater@l eeinforced
concrete. Its popularity may be attributed to tbenbined effects of several factors, the most ingurof which are: it
possesses great strength, it exhibits good dyctitit fabrication is easy, and its is relativeheap. In addition, steel is the

ultimate recyclable material. Several advantagedisted below:
Advantages of Steel Structures
Ease of Erection

No formwork needed and minimum carnage requiredtifi@r erection, many parts of the structure can be

prefabricated away from the site, and it is largedif-supporting during erection.
Modifications

Either extensions or strengthening is relativetgightforward. Possible reuses after a structudisassembled or
scrap value even though not reusable.

Uniformity
The properties of steel do not change apprecialilytime, as do those of reinforced-concrete stngs.
Low Self-Weight
Permits large clear spans without intermediateroaki
Dimensional Control
Prefabrication in the workshop ensures accuratd wor
1.4 Problems Associated with the Analysis and Desi@f Steel Frame Structures

The design of structural steelwork is a procesgdasn many contributing aspects: past experienseiafessful

and unsuccessful construction, laboratory tests rsdlts of research, combining to ensure strustule not fail.
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Structures can therefore be used efficiently afielsaut at the same time must be economicallyttauitl maintained.

From this it can be understood that the designga®anust satisfy two conflicting aim economy anfittya
Achieving this compromise is not an easy task, equently codes of practice have evolved to assidt guide the

designer, but different national codes,
1.4.1 The Need for Design Optimization
One can address several difficulties that may faeestructural designer when utilizing conventiodesign.
» Firstly, the skill and experience of the designérich could lead to completely different designs.

» Secondly, the complexity of the treated structurakes the difficulty of doing several re-analysed an

subsequently redesigns.
e Thirdly, there is difficulty of handling all posdéloading cases.
» Fourthly, the intended usage of the structure mpgévent the designer from achieving economicalptes

» Fifthly, the alternative design and analysis teghas might confuse the designer in choosing theoapiate

technique.

Therefore, the use of computers has made relialdeaacurate analysis much easier, and the speadmhith
alternative solutions can be analysed makes itilples®o achieve more economical designs than wtegnable in the
past. Design optimization is therefore an intengstiesearch topic, and recommendations for despgimization have
been made by design experts among them (MacGih#37 and Adeli, 1994). Design optimization is caneel with the
problem of the selection of geometric parameteid @echanical strength properties for the structetaiments. This
selection consists of a search for the extremetisak which satisfy the prescribed criteria, tkarsh being conducted in
an objective and rational way that does not relytloa intuition or special abilities of the designdihus, design
optimization takes over that part of the desigrcpss, which consists of selecting sizes and subsdélgichecking that the
required criteria have been met. The question sangleether the design optimization field can or #thdully replace
traditional designing procedures, that is, whetirenot the task of optimization is to embrace alligural parameters so
that the solution of an optimization problem shoblkl equivalent to obtaining a complete design atracture. This

guestion will be answered in this thesis.
1.5 Proposed Study

In the present study the above trend in optimirai® given due importance. Hence ‘SIMPLE GENETIC
ALGORITHM’ (SGA) is used.

A problem as opposed to an academic one with ti@simg characteristics is selected.
The design variables are discrete.
* The material of frame is steel.

e The structural optimization is carried out usingMELE GENETIC ALGORITHM'.
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Software Description
1.6.1 ANSYS

ANSYS is powerful in representing the partiallytragied connections with a non-linear spring eletméiso,

ANSYS is used as its reason for second-order bebinig evaluated accurately for partially restrdifirmmes.
1.6.1.1 Modeling of Steel Frame Structures with AN8S

Some of the basic frame analysis methods suchoge sleflection, moment distribution, stiffness dledibility
methods can be modified to work with partially ragted connections but tend to be very tedious eowdplicated.
Because most structural engineering use computdheianalysis of frames, there are several softwackages designed
to analyze structures such as SAP2000 and STAAR fhoblem is that they cannot represent partiadistrained
connection behaviour with moment-rotational curve.

In this study, ANSYS software was used to modeiotes elements and connection of steel structurBiSY¥SS is
powerful in representing the partially restrain@thmwections with a non-linear spring element. ABKNSYS is used as its

reason for second-order behaviour is evaluatedratty for partially restrained frames.
1.6.2 TURBO C++

TURBO C++ is a programming language: As a programgnfanguage, C is rather like Pascal or Fortrarnu&é&
are stored in variables. Programs are structuredefining and calling functions. Program flow isntmlled using loops,
if statements and function calls. Input and outpan be directed to the terminal or to files. Relat@ata can be stored

together in arrays or structures.

Of the three languages, C allows the most preasgral of input and output. C is also rather maesé than
Fortran or Pascal. This can result in short effitigrograms, where the programmer has made wis®fugés range of

powerful operators. It also allows the programnogprioduce programs which are impossible to undedsta
1.7 Scope and Objective
of the Present Work

The following are the scope and objective of thespnt work:

« Aim of this thesis work is to do an optimal desighsteel frames for minimum cost. In steel struesuit is
assumed that, cost and weight are proportionalcélé@mthe present study optimal design of framesrised by

minimizing the weight of the frame.

* In the present study ‘SIMPLE GENETIC ALGORITHMS'@3), which are becoming popular in engineering

optimization problems in the recent past are used.
e To perform above problem the commercial availabfénsares like ANSYS and TURBO C++ are used.

» Presently researchers have at their disposal a euwibfinite element packages, which allow obtagniall

mechanical characteristics of the structure: nddgdlacements, stresses, reactive forces at sigpeoct
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CHAPTER 2
LITERATURE REVIEW

2.1 Introduction
This chapter reviews all the works that has beenethout previously related to the present work.

2.2 Review of Literature
2.2.1 By S. Pezeshk, Member, ASCE, Carried Out th&/ork on “Design Optimization of 2D “Steel Frame

Structures”

This chapter presents a genetic algorithm for desigtimization of multi-bay multi— storey steel rfraworks

according to BS 5950 to achieve our objectives.

The first is to ascertain that the developed GArapgh can successfully be incorporated in desigimigation in
which framework members are required to be adofsted the available catalogue of standard steei@ext The design

should satisfy a practical design situation in wahice most un favorable loading cases are considere
e The second is to understand the advantages ofiag@utomated design approaches.

e The third is to investigate the effect of the agmtoes, employed for the determination of the effedbuckling

length of a column, on the optimum design. Hereedglapproaches are tackled and results are prdsente
» The fourth is to demonstrate the effect of the dexipy of the design problem on the developed atgor.

This chapter starts with describing the design @doce for steel frame structures according to BS0O5%hen
combines this procedure with the GA to perform gesiptimization of the steel frame structures. Tesign method

obtained a steel frame structure with the leasgktddy selecting appropriate sections for beamscahtnns from BS 4.
This paper concluded that:

The optimizer is successfully linked to a finitemlent package for a more accurate treatment afete¥mination
of the effective buckling length that leads to aeiig a more economical design. It is interestmgdte that even some of
the powerful computer software packages availaddey for the design of steel frameworks such as @KCSTAAD-III
require the structural designer to input the effecbuckling length factor as a parameter. In gtigly, computation of the

effective buckling length is automated and includethe developed algorithm.

2.2.2 S. Y. MAHFOUZ University of Bradford, UK, 199, Carried Out Work on, “Design Optimization of
Structural Steel Work”.

This thesis deals with the design optimization Bféhd 3D steel frame structures.

A computer code based on the direct method forstheility analysis of 2D steel frame structures basn
developed and verified. This code is then usedotopare the values of the effective buckling lengticolumns with

those determined from the charts presented in B8.59

The versatility of GAs in dealing with discrete @gs optimization is demonstrated. Modifications @&\ are

implemented to improve its performance. It is shaat the choice of parameters in a GA can conaldgraffect its
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robustness and speed of convergence. A technigdevieloped to deal with a case when the numberi@ague cross

sections does not fit into a string keeping thebptility of selection equal for all sections.

Applications to design optimization of 2D and 3[@edtstructures are presented. In order to conseistic
steelwork design problems, a GA has been linkelggstem of structural design rules (British Stadsl®S 5950 and BS
6399), interacting with a finite element analys&ckage ANSYS. A steelwork optimization problem @sidered as a
selection of the optimum set of practical crosgisas from a catalogue (British Standard BS 4, B38). The design
criteria of the codes of practice and other prattitesigner’'s considerations are reflected in thenélation of the

optimization problem.

2.2.3 By S. Pezeshk, 1Member, ASCE, C. V. Camp, Astate Member, ASCE, Andd. Chen, Member, ASCE

Carried Out the Work on "Design of Nonlinear Framed Structure Using Genetic Optimization”.

In this paper we present a genetic algorithm (G&gdal optimization procedure for the design of 2&pngetrical,
nonlinear steel-framed structures. The approactepted uses GAs as a tool to achieve discretensamlpptimal or near-
optimal designs. Frames are designed in accordaithehe requirements of the AISC-LRFD specificatidn this paper,
He employs a group selection mechanism, discussmpioved adapting crossover operator, and provédemmendations
on the penalty function selection. He compares dhferences between optimized designs obtained ibgat and
geometrically nonlinear analyses. Through two exaspwe will illustrate that the optimal designs arot affected
significantly by theP-D effects.

CHAPTER 3
GENENTIC ALGORITHM

3.1 Introduction

Genetic algorithm is a method for solving optimiaatproblems that is based on natural selectiom,pfocess
that drives biological evolution. The genetic aiton repeatedly modifies a population of individsalutions. At each
step, the genetic algorithm selects individualsaatiom from the current population to be parents @es them produce
the children for the next generation. Over suceesgenerations, the population “evolves” towardptimal solution. We
can apply the genetic algorithm to solve a varietyoptimization problems that are not well suiteat Standard
optimization algorithms, including problems in whiche objective function is discontinuous, non-liéntiable,

stochastic, or highly nonlinear.
3.2 Basic Concepts

GAs are good at taking larger, potentially hugearsle spaces and navigating them looking for optimal

combinations of things and solutions which we migtitfind in a life time.

GAs is very different from most of the traditiorgdtimization methods. Genetic algorithms need desjgace to
be converted into genetic space. So, Genetic atgosi work with a coding of variables. The advantafyeorking with a
coding of variable space is that coding discreterles search space even though the function mapt@éuous. A more
striking difference between GAs and most of théitranal optimization method is that GA uses a dapon of points at
one time in contrast to the single point approaghraditional optimization methods. This means t8# processes a

number of designs at the same time.
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3.3Working Principle

The GA is an iterative optimization procedure. éast of working with a single solution in each itema, a GA
works with a number of solutions (collectively knovas population) in each iteration. A flowchart tok working

principle of a simple GA is shown in Figure 1.

In the absence of any knowledge of the problem dons]GA begins its search from a random populatbn
solutions. We shall discuss about the detail ofrepgrocedure a little later. But now notice hoA processes strings in
iteration. If a termination criterion is not saiisf, three different operators — reproduction, soesr and mutation — are
applied to update the population of strings. Oreation of these three operators is known as argéoe in the parlance

of GAs. Since the representation of a solution @4ais similar to a natural chromosome and GA ofmesa

Fig. 2.1: Flowchart of working principle of a genetic algorithm

Figure 1
3.3.1Genetic Operators

Algorithm derives their power from genetic operatofA Simple Genetic Algorithm that yields good fesun

many practical problems composed of three operators
e Reproduction
» Crossover
e Mutation

Other than these, low level operators like domieamaversion, deletion, translocation, segregatéuplication
etc., can also be incorporated. Depending on theeaf the problem and on the requirements fofoperance SGAs can

be improved by applying more and more of theseaipes.
Reproduction

Reproduction (or selection) is usually the firseogtor applied to a population. Reproduction selgobd strings
in a population and forms a mating pool. The esakitea is that above-average strings are picketh fthe current
population and duplicates of them are insertedhim hating pool. The commonly used reproduction aiperis the
proportionate selection operator, where a strintha current population is selected with probapifitoportional to the

string’s fitness. Thus, the ith string in the pagidn is selected with probability proportional.t8ince the population size
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is usually kept fixed in a simple GA, the cumulatprobability for all string in the population mums one.

Crossover

The crossover operator is applied next to the gtdhthe mating pool. In crossover operator, twings are
picked from the mating pool at random and someigoxf the strings is exchanged between the strilmga single-point
crossover operator, both strings are cut at artrarpiplace and right-side portion of both strirge swapped among

themselves to create two new strings, as illugdratehe following:

Crossover is the recombination operator. Aftengsifor mating are selected, a crosstie is seletteashdom and
bits are swapped between the strings followingctless site. Crossover is performed at a fairly hpgbbability (i.e.) 0.6
to 0.8.

Parent LOO0O0O0O 00111Child1

s

Parent211111 11000 Child 2

In the single-point crossover operator search isemtensive, but the maximum information is presdrirom
parent to children. On the other hand, in the uniferossover, the search is very extensive butrmim information is
preserved between parent and children strings. ¢fossover probability of PCis used then 100PCY%gsrin the

population are used in the crossover operation@h@l- PC) %of the population are simply copiethi® new population.

Mutation

Crossover operator is mainly responsible for therae aspect of genetic algorithms, even thoughnibtation
operator is also used for this purpose sparinghe Mutation operator changes a 1 to a 0 and viceawsith a small

mutation probability: Pm

00000

|

00010

In the above example, fourth gene has changedii® ythereby creating a new solution. The needniatation is
to maintain diversity in population. For exampl&,in a particular position along the string length strings in the
population have a value 0, and a 1 is needed trpthsition to obtain optimum or a near-optimum $oly, then mutation
operator described above will be able to creatdarathat position. The inclusion of mutation intras some probability

of turning that 0 into 1. Furthermore, for localgravement of a solution, mutation is useful.

3.4 Encoding

Various encoding methods have been created foicpkmt problems to provide effective implementatioh
genetic algorithms. According to what kind of syrim used as the alleles of a gene, the encodingpade can be

classified as follows:
e Binary encoding

* Real-number encoding
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» Integer or literal permutation encoding
3.4.1 Binary Encoding

Binary encoding (i.e., the bit strings) are the treesnmon encoding used for several of reasons.i©historical:
in their earlier work, Holland and his students @amrated on such encodings and genetic algorighrastices have
tended to follow this lead. Another reason for thvas because much of existing GAs theories is bardtie assumption

of using binary encoding.
3.4.1. a Crossover

The single point, multi point, and uniform crossogan implement in binary encoding. The effect afle one of
these crossover type is shown in the figure (2)

Single
point

GlofifififiPeso. Gfofifofola )

Parent 1 Offspring 1

fofififofof1] Gfilifilil)

Parent 2 Offspring 2

(a)

Figure 2: Explanation of Crossover Effect on BinaryString. Single Point Crossover
3.4.1. b. Mutation

The single point and multi point can implement indsy encoding, the effect of mutation is shownha figure

3)

Single point mutation

A
nanoan =~ nagoan

Parent Offspring

(a)
Figure 3: Explanation of Mutation Effect on Binary String. (a) Single Point Mutation
3.5 General Steps Followed By a Genetic Algorithm
The general steps followed by a Genetic Algoritimacpss can be summarized as:
» Initialize the population
e Evaluate initial population
« Perform competitive selection
» Apply genetic operators to generate new solutions
» Evaluate solutions in the population

* Repeat steps 3 through 5 until some convergentziarare satisfied.
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3.6 Application of Genetic Algorithms

Genetic algorithms (GAs) are adaptive methods whiely be used to solve search and optimization progl

The power of GAs comes from the fact that the tepmis robust and can deal successfully with aewihge of problem

areas, including those which are difficult for atlmeethods to solve. Therefore, the main groundG@és is in difficult

areas where no such solving techniques exist. Eareare existing techniques work well, improvemeraa be made by

mixing them with GAs.

GAs in various forms is implemented to wide rangproblems including the following:

Optimization: GAs has been used in a wide varidtpmiimization tasks, including numerical optimimsxt and

combinatorial optimization problems such as cirdaisign and job shop scheduling.

Automatic Programming: GAs has been used to evetveputer programs for special tasks and to dediger o

computational structures cellular automata andreprtetworks.

Machine and robot learning: GAs have been used niany machine learning applications, including
classification and prediction tasks such as thdiptien of dynamical systems, weather predictiand prediction
of protein structure. GAs have also been used sgdeaeural networks, and to evolve rules for legyrclassifier

systems or symbolic production systems and to demig control robots.

3.7 Advantages and Disadvantage of Genetic Algoriths

Advantages

Optimizes with continuous or discrete variables.
Doesn't require derivative information.
Simultaneously searches from a wide sampling ottst surface.

Deals with a large number of variables.

Disadvantages

Optimization algorithms have the disadvantage #ome kind of initial guess is required and this rbéas the

final result. GAs on the other hand only requirgearch range, which need only be constrained loy gniowledge of the
physical properties of the system. Effectively tlmarch the whole of the solution space, witholdutating the fitness

function at every point. This can help avoid a angeny optimization problem which is being tragpe local maxima or

minima. There are two main reasons for this:

The initial population, being randomly generated| sample the whole of the solution space, andjastta small

area.

Variation inducing tactics, i.e. crossover and rtiatg prevent the algorithm being trapped in one pé the

solution space.
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4.4 Flow chart of genetic algorithm for steel frameoptimization:

INPUT:No of Design Variables, Substring Length,
Pop Size, Truss Data and List of Available Sections

¥
| Generation=1 | ANSYS
¥
‘ Randomly Generate Population | lladeh,.ng and
I Analysis of Frames
-;| Compute Weight ‘ |

Generation=[Generation+l |

l¢

¥
Compute Individual Fitness and Actual Count

4
‘ Store Best Individual ‘

]
‘ Create 3la¥i.ng Pool ‘
%

Comp‘ul: Member
Force and Stress

Create Population in Next Generation by Applying
Crassoreiﬂperamr
b

NO

4.5. Frame Details
Span =16 m
Height =7.2 m

Support = fixed

i Print Best Individual ‘

Figure 4

3024 KN/m

S T O Y

17.79KN_—» l l

c3
355KN ||

Bl Bl
39.14 KN/m

C3|3.6m

¥

l

NN

39.14 KN/m C

Lh

llB}ll lllBlllll Som

Ceo

6m | 6m

3.6m]

Figure 5: Simple Steel Frame
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3 9 6
12 14
2 10 7
13 15
1 11 8
Figure 6: Frame with Members
Table 1: Section Properties of Three-Storey, Two-BaFrame
Type Section Area(cm2) I(mm4) r (mm)
Cl | Wi12x35 2547 | 1.1x10* 21.3
Cc2 W 12 x 26 19.43 0.7 x10* 16.6
C3 | w8x24 17.98 | 3.2x10* 17.5
C4 W 14 x 43 32.00 1.67 x10* 215
C5 | W12x30 2233 | 09x10* | 238
C6 | W10x20 16.48 | 0.46x10* | 16.2
Bl | W16x25 1951 | 1.17x10%* | 16.6
4.8. Input

» For Genetic Algorithms

Population size

Chromosome length

Number of parameters

Length of parameter

Maximum number of generations

Crossover probability

Mutation probability

Set of areas.

e For Analysis

Number of members

Young’s modulus

Nodal loads

Member areas from GA.
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4.9. Result
Optimum weight = 23.026 KN

Details of computations for case-1 are shown infelewing tables. Program is run for three timeghwdifferent
population sizes, crossover probability and geranat(refer table-2). With the values obtained drépdrawn between

generation and weight.

Table-2: Program Variables

Variables Case-1 | Case-2 | Case-3
Pop size 16 20 16
Max.Gen 100 150 150
Crossover prob 0.8 0.8 0.75
Mutation prob 0.01 0.01 0.01
Max Gen=100
Pcross =0.8
Pmutn =0.01
Table 3: Generation -1
No POPULATION Al A2 A3 Ad 1(x) F FACT AC POOL PAIR CS NEW POPULATION
1 0000101011101111 24 47 7250 22 56 2442 45395 102624 09799 1 0000101011101111 32 9 1011000001110111
2 1010000010001010 72.50 24.47 80.25 72.30 84337 27273 0.2595 0 0001000001110111 0010010001110001
3 0010010001110001 17.98 22.33 26.20 1943 27988 1249.67 1.1892 1 0010010001110001 “ 2 0 1110000001110001
4 1011000001110111 17.92 2447 2620 2622 31.779 122173 11626 1 1011000001110111 0010010011111110
5 1110000011111110 2276 24 47 2442 2276 31.008 119599 1.1381 1 1110000011111110 2 6) 5 1100100011111110
6 0110101101101100 1951 17.92 1951 1952 25317 1108 64 1.0550 1 0110101101101100 1110000100010101
7 1100100100010101 1952 8591 1943 1648 43102 98953 09415 1 1100100100010101 0 9 13 1110000110100001
8 1110000110100000 2276 19.43 72.50 2447 43993 88455 0.8417 1 1110000110100000 0001000000111010
9 0001000000111011 1943 24 47 32.00 17.92 29928 1268.44 1.2070 1 0001000000111011 21D 16 0110101101010101
10 0001000001110111 1943 2447 2622 2622 32206 1290 63 12282 2 0001000001110111 1100100100101100
Avg fit = 1050.817
Max fit = 1290.63
Min wt. = 25.31
Table 4: Generation -30
No POPULATION Al A2 A3 Ad f(x) F FACT AC POOL PAIR CS NEW POPULATION
1 0110101101100001 1951 1792 1951 1943 25274 T06.149 1.0950 1 0110101101100001 (7 2) 11 1110001101010101
2 1110000100100001 2276 1943 1998 1943 26.18 604133 09372 1 1110000100100001 0110101101010101
3 0110101101010101 1951 1792 16.48 16.48 2520 747120 1.1585 1 0110101101010101 (74 11 1110001101100001
4 0110101100100001 1951 1792 1798 1943 2484 738.160 1.1446 1 0110101100100001 1110001101010101
5 1110001101100001 2276 32.00 19.51 19.43 30.17 647.649 1.0043 1 1110001101100001 22) 4 1110001101100001
6 0110100100100001 19.51 8591 17.98 19.43 44.08 213471 03310 0 1110000100010101 1110000100010101
7 1110000100010101 2276 1943 19.43 16.48 2520 669.605 1.0383 1 1110000100010101 (3 6) 4 1110001101010101
8 1110001101010101 11.76 32.00 16.48 16.48 27.93 574.240 0.8904 1 1110001101010101 0110101101100001
9 0110101101100001 19.51 17.92 19.51 19.43 2527 756.128 1.1725 1 0110101101100001 #1) 16 1110000100010101
10 1110000100010101 2276 1943 19.43 16.48 2520 791.736 1.2277 2 1110000100010101 1110000100010101

Avg fit = 644.839

Max fit =791.736
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Min wt. = 24.84
Table 5: Generation-100
1 1110000100010101 2276 1943 1943 16.48 25207 439913 1.0990 1 1110000100010101 6 9 0 0110101101010101
2 1110001101100001 2276 32.001 1951 1943 30.178 276.348 0.6903 1 1110001101100001 1110001101010101
3 111000100010101 2276 943 1943 16.48 25207 455.639 1.1382 1 111000100010101 73 8 1110000100100001
4 1110000100100001 2276 1943 1798 1943 26188 456652 1.1408 1 1110000100100001 1110000100100001
5 1110001101100001 2276 32.00 1951 1943 30.178 380621 09308 1 1110001101100001 ©2) 8 0110101101100001
6 1110001101010101 2276 32.00 1648 16.48. 27.930 236.534 0.5908 0 1110001101010101 1110001101010101
7 0110101101010101 1951 1792 16 48 1648 23.026 431.621 1.0782 1 0110101101010101 6 4) 12 1110000100100001
8 1110000100100001 2276 1943 1798 1943 26.188 334.178 0.8346 1 1110000100100001 1110000100010101
9 1110000100010101 2276 1943 1943 16.48 25.207 489.759 12233 1 1110000100010101 (€3] 11 1110001101010101
10 1110001101010101 2276 32.00 1648 16.48 27930 301.656 12332 2 1110001101010101 0110101101010101

Avg fit = 400.292
Max fit =501.656
Min wt. = 23.026

GRAPH: GENERATION V s WEIGHT
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Figure 7

4.10 The Deformed Shape and Bending Moment for Nobinear Analysis, is Shown in Figure 8 and Figure 9
Respectively. A Basic ANSYS Input File as in Appeng-A

.134183 0248 gmomae T .pasias 120

Figure 8: Three Storeys, Two Bay Deformed Shapes
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Figure 9: Three Storey Two Bay Bending Moment

Table 6: Tabulates the Comparison of Horizontal Diplacements at the Upper

Left Corner and Max Bending Moment at the Column Bae with Semi-Rigid Frame by ANSYS

Column Base with Semi-Rigid Frame | Ansys
Upper left corner displacement (m) 0.03
Max bending moment(KN-m) 23.16

CHAPTER 5

DISCUSSION AND CONCLUSIONS

5.1. General

In the present study genetic algorithms which wamkdiscrete variables are implemented for the dpétion of
truss and proved to be robust. The optimum solugemerated is feasible both from a mathematicalpaadtical point of
view. GAs is used for solving problems where gratieomputations are difficult. Though gradient cagtions are
absent, GAs is slower compared to traditional afgors. This is not a limitation in the present dagmputing
environment, with fast computers and large amofintsources. The program developed for the prestady can be used

to optimize any other engineering structure by $immpodifying the analysis part.

Genetic algorithm program is developed in TURBO Geftware and modelling and analysis of truss rsiez
out in ANSYS software.

e From graph it is clear that even when the paramdiilee population size, crossover probability angnber of
generations are changed, for same constraintsfigaeby the user, the optimum weight is the sanee,(23.207

KN). This proves the robustness of GA.

» Constraints chosen are design strength in compressember and design strength in tension membesel are

chosen according to IS 800-2007 provisions.

» From table-6 we can see that 10 individuals hageestime weight. This emphasizes that the convergeiteaa

has been achieved.
« Also from graph it is evident that the optimum wigs arrived

In casel during 4bgeneration
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In case2 during 39generation
In case3 during 37generation
Hence it is proved that the genetic operators Inalvastness in search process.

In present work, simple genetic operators viz.radpction, single site crossover and bitwise matatare
applied. Crossover and mutation are taking pladbeaprobabilities specified by the user. Hence e under
the control of the user. In the present study higlvressover probability and lower mutation probitypibre

adopted.

5.2. Suggestions for Further Work

Multiple point crossovers can be implemented aedetiect can be compared in future works.

Other genetic operators like inversion, speciadweting, segregation etc., can be studied and thilirence in

the search can be tested.

Method of fitness scaling may be changed. In futupeks linear scaling may be adopted.
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